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Spatiotemporal-social association predicts
immunological similarity in rewilded mice
Alexander E. Downie1†*§ , Oyebola Oyesola2†, Ramya S. Barre1,3, Quentin Caudron1,
Ying-Han Chen4, Emily J. Dennis5, Romain Garnier1, Kasalina Kiwanuka2, Arthur Menezes1,
Daniel J. Navarrete1,6, Octavio Mondragón-Palomino2, Jesse B. Saunders1, Christopher K. Tokita1,
Kimberly Zaldana2,7, Ken Cadwell8,9,10, P’ng Loke2‡*, Andrea L. Graham1,11‡*

Environmental influences on immune phenotypes are well-documented, but our understanding of which ele-
ments of the environment affect immune systems, and how, remains vague. Behaviors, including socializing
with others, are central to an individual’s interaction with its environment. We therefore tracked behavior of
rewilded laboratory mice of three inbred strains in outdoor enclosures and examined contributions of behavior,
including associationsmeasured from spatiotemporal co-occurrences, to immune phenotypes. We found exten-
sive variation in individual and social behavior among and within mouse strains upon rewilding. In addition, we
found that the more associated two individuals were, the more similar their immune phenotypes were. Spatio-
temporal association was particularly predictive of similar memory T and B cell profiles and was more influential
than sibling relationships or shared infection status. These results highlight the importance of shared spatio-
temporal activity patterns and/or social networks for immune phenotype and suggest potential immunological
correlates of social life.
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INTRODUCTION
One of the fundamental roles of an organism’s immune system is to
mediate its interaction with its environment (1). Immune pheno-
types of humans and other species exhibit considerable nonherit-
able, environmentally derived variation (2–4). For example,
nonheritable variation in abundance of many types of T and B
cells in humans is >80% (5). Uncovering which elements of the en-
vironment contribute to this variation and how they do so remains
an open challenge, crucial both for medical practice (3) and for un-
derstanding the evolutionary and ecological forces that shape the
immune system (6).

A key part of an individual’s environmental interface is whom
they spend time with or interact with and how often. Such patterns
of association can shape the transmission and exchange of microbes
and antigens, whether pathogenic (7, 8) or nonpathogenic: For

example, in the wild, microbiome similarity between individuals
correlates with social group membership (9, 10) and the strength
of social and spatiotemporal network ties (11–14). Social interac-
tions are intimately linked to shared spatiotemporal movement pat-
terns because patterns of movement will constrain who individuals
interact with, which, in turn, feed back into patterns of movement
(15–17). The two are often treated in the literature as somewhat syn-
onymous, with association networks calculated from spatiotempo-
ral co-occurrences frequently referred to as “social networks” in
reflection of these feedbacks. In addition, if socially connected indi-
viduals visit similar spaces at similar times, even without physical
contact, then individuals could acquire the same antigens preexist-
ing in the environment, beyond any antigen transmission between
individuals. This could then be a meaningful force in the observed
relationship between social ties and microbiome composition. Spa-
tiotemporal/social connections between individuals are therefore
potentially an important influence on antigen exposure and its var-
iation within and among populations.

In turn, antigen exposure strongly influences immune pheno-
type; exposing lab mice to various symbiotic microbes shapes
their immune phenotypes (18–20), while systematic enrichment
of microbiota produces immune phenotypes quite distinct from
standard specific–pathogen–free lab mice (21–26). Other sources
of antigens, like allergens, can also influence immune phenotypes
(27). Thus, mechanisms like common antigenic experience
through microbial/allergen transmission or shared environmental
acquisition of antigens could create correlative, and possibly even
causal, links between spatiotemporal/social networks and immune
phenotypes. For instance, long-term space use patterns have been
shown to be correlated with immune phenotype in red deer (28).
Ties between elements of an individual’s sociality and immune phe-
notype have been previously identified in mice; for example, tumor
necrosis factor–α (TNF-α) levels have been associated with gregar-
iousness (29), while interleukin-17 receptor A (IL-17RA) and
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interferon-γ (IFN-γ) promote neurological disposition toward
social behavior (30, 31). In addition, one study has found that co-
parenting humans are more immunologically similar to each other
than they are to other adults (children were not examined), but it
did not consider other social interactions or quantify social net-
works (32). Hence, it remains unclear to what extent and how an
individual’s immune phenotype is connected to its social life and
associations with others, especially the frequency of interactions
and identities of the partner(s).

We hypothesize that individuals with stronger spatiotemporal
associations should have more similar immune phenotypes. We
tested this hypothesis using “rewilded” laboratory mice that are
born and raised to maturity indoors in conventional vivaria, then
released into outdoor enclosures, where they experience natural
weather conditions, eat a varied diet, and have space to roam and
burrow. Such settings offer insight into environmental drivers of
variation in immune function that are relevant to the natural con-
texts in which immune systems evolved (33), although we did
exclude predators and provide chow and water. We used three
founder strains of the Collaborative Cross: C57BL/6J, 129S1/
SvImJ, and PWK/PhJ. These strains have documented differences
in behavior in the lab, such as lower levels of movement in a
home cage for 129S1 mice compared to the other two strains (34,
35). Each enclosure contained mice from only one strain; we con-
ducted our experiment in two blocks while rotating strain-enclosure
pairings between blocks to decouple effects of genotype and enclo-
sure. We tracked behavior with subcutaneous radio-frequency iden-
tification (RFID) tags; five RFID stations per 180-m2 enclosure—
one at the chow feeder and four arrayed in a diamond pattern
around the enclosure’s perimeter (Fig. 1A)—recorded visits by
each mouse during each 5-week experimental period. We collected
blood samples for complete blood count (CBC) analysis before
release and 2 weeks after release, when we challenged a subset of
the mice with Trichuris muris, an intestinal nematode parasite. At
5 weeks after release, before any shedding of T. muris eggs, we
trapped out the mice for extensive immune phenotyping (36) and
collected fecal samples for microbiome analysis. We analyzed our
data using Bayesian linear regression models with appropriate re-
sponse variable distributions and priors. We generated posterior
probability distributions for the associations between predictors
and response variables (see Materials and Methods). Our results
offer insight into rewilded mouse behavior and reveal intriguing
ties between spatiotemporal/social association patterns and
immune variation within populations.

RESULTS
Individual and social behavior of rewilded mice varies on
several axes
Individual behavior, in terms of the abundance and spatial and tem-
poral distribution of check-ins at RFID stations, varied substantially
both within and among strains. PWK/PhJ mice (n = 17) had the
most check-ins per night, followed by C57BL/6 mice (n = 23) and
then 129S1 mice (n = 20) (Fig. 1B and table S1). PWK/PhJ and
C57BL/6 mice traveled similar minimum distances per night but
generally further than 129S1 mice (Fig. 1B and table S2). Strain
did not predict proportion of check-ins occurring at the feeding
station (table S3), but there was wide variation within strains
(Fig. 1C). We also observed variation within and among strains in

mean roaming entropy, a measure of how evenly spread RFID
check-ins are in time and across locations; individuals with more
check-ins generally had higher roaming entropy, and C57BL/6
mice had greater roaming entropy than 129S1 mice (Fig. 1D and
table S4). In general, strain did influence rewilded mouse individual
behavior, but, within a given genetic background, mice still differed
substantially (see Supplementary Text).

To study social behavior, we calculated spatiotemporal associa-
tion networks for each co-housed group based on their appearances
at RFID stations. We defined pairwise spatiotemporal association
strength with the simple ratio index (SRI), here the ratio of the
number of night-location combinations at which the two mice ap-
peared within some defined time interval of each other to the total
number of night-location combinations at which one or both mice
appeared. For the sake of technical precision we use the term “spa-
tiotemporal association” for this quantity, although it is sometimes
referred to in the literature as “social association,” and it is often
used to quantify animal social networks (11, 16, 37, 38). Using spa-
tiotemporal overlaps for mapping said social networks can be pref-
erable to relying solely on physical interactions (16), partly because
interactions between individuals may be visual, aural, and/or olfac-
tory, not simply physical. Thus, spatiotemporal association may be
very informative for studying social behavior. However, there are
complexities in the precise relationship between social connections
and shared spatiotemporal behavior patterns, and often the two
cannot be readily separated, especially given their mutual feedbacks
(15).

Much like individual activity, observed spatiotemporal associa-
tions varied within and among strains. C57BL/6mice and PWK/PhJ
mice both had stronger pairwise associations over 15-min overlap
windows than 129S1 mice (n = 290) (Fig. 2A, table S5, and fig. S1).
PWK/PhJ and C57BL/6 mice had similar average pairwise associa-
tion strengths despite PWK/PhJ mice having many more check-ins
than C57BL/6 mice (Figs. 1B and 2A). Together, these results
suggest that stronger pairwise spatiotemporal associations are not
simply or even necessarily a product of more RFID check-ins. Fur-
thermore, neither sibling relationships nor cage-sharing before
release influenced association strengths (fig. S2 and table S5). Asso-
ciations were stronger at feeding stations than at nonfeeding loca-
tions for all strains, but mice did associate at nonfeeding locations
(mean strength of social associations at nonfeeders across all three
strains= 0.196) and pairwise associations at the two sets of locations
were correlated (Pearson’s r = 0.524) (Fig. 2B). Intriguingly, despite
the variation in pairwise association strength, within each enclo-
sure’s network, mice were generally quite similar in their average
association strength and centrality (fig. S3). The challenges with
T. muris negligibly altered individual and association behavior,
with the only small effects being slightly decreased check-in
counts after infection and a slight increase in the relative proportion
of check-ins at the feeder by helminth-infected mice (tables S1 to
S6). Overall, we find substantial genetic differences in individual
and social behavior in a seminatural setting and further within-
strain heterogeneity.

Spatiotemporal association strength positively correlates
with similarity of aspects of immune phenotype
We next assessed our hypothesis that immune phenotype and
behavior would be linked. We found that individual-level behavior,
e.g., number of check-ins, broadly did not predict immune
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phenotypes of mice, although there were a few exceptions, such as
monocyte abundances in the blood negatively correlating with both
minimum distance traveled per night and mean roaming entropy
(table S7). However, we did find evidence that spatiotemporal asso-
ciations predicted the immune phenotypes of the mice. We calcu-
lated pairwise similarities for each of several aspects of immune
phenotype at the time of trapout: white blood cell profiles drawn
from CBC measurements, CD4, CD8, and combined CD4 and

CD8 T cell memory phenotypes (determined from cell surface ex-
pression of CD44 and CD62L as measured by flow cytometry) in
blood and mesenteric lymph nodes (MLNs), B cell CD44 and
CD62L expression phenotypes in the MLNs drawn from flow cy-
tometry, plasma cytokine concentrations, and MLN cytokine pro-
duction from antigenic stimulation (36). To quantify pairwise
similarity, we used Jaccard index for cell-type distributions and
Manhattan distance for cytokine measures. Using multiple-

Fig. 1. Rewilded mouse behaviors varied within and among strains. (A) Aerial image via Google Earth of one of the three enclosures used during the experiment. “R”
circles identify the locations of RFID stations within enclosure (red, chow feeder; blue, nonfeeder); the reader layout was the same for each enclosure, and the three
enclosures have similar dimensions. (B) Check-ins and minimum distance traveled per night for each individual. The 12 mice that lost RFID tags or moved among en-
closures are excluded from plots of individual behavior. (C) Proportion of check-ins taking place at the RFID reader attached to the feeding station within each enclosure,
for each individual. (D) Mean nightly roaming entropy—evenness of RFID activity in time and space—of rewilded mice (see Materials and Methods).
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membership mixed-effects Bayesian linear regressions, we found
that strength of spatiotemporal association of a pair of mice corre-
lated positively with pairwise similarity of several aspects of their
immune phenotypes, in that the values of regression-estimated co-
efficients for the relationship between a pair’s spatiotemporal asso-
ciation and immune phenotype similarity are largely or entirely
positive. This relationship was strongest for CD4 T cell memory
phenotypes in the MLNs (n = 362 pairs), but combined MLN
CD4/CD8 T cell memory (n = 362), MLN B cell phenotypes (n =
362), and white blood cell profiles from CBC differentials (n = 391)
also exhibited positive correlations between spatiotemporal associ-
ation and immune similarity (Fig. 3, A and B; fig. S4; and table S8).
We did not find relationships between spatiotemporal association
and similarity of blood T cell (n = 323) or plasma cytokine profiles
(n = 306); intriguingly, similarity of in vitro MLN cell cytokine pro-
duction in response to stimulation showed a negative correlation
with spatiotemporal association strength (n = 147) (Fig. 3, A and
C, and tables S8 and S9). In addition to the relationship with

spatiotemporal association, we consistently found that different
strains exhibited different levels of immune similarity; shared infec-
tion status (i.e., both helminth-infected or both uninfected) often
had a small positive effect on immune similarity, while sibling rela-
tionships consistently had none (Fig. 3B and tables S8 and S9).
Overall, these results suggest that spatiotemporal association can
predict similarity of WBC differentials in the blood and memory
lymphocyte composition in lymphoid tissue.

We next used CBC data from blood draws taken at three time
points—before release, the midpoint at 2 weeks after release, and
the endpoint at 5 weeks after release—to examine how the relation-
ship of immune similarity to spatiotemporal association changed
across the experiment. Immune similarity before release only
weakly correlated with immune similarity at the endpoint (Pear-
son’s r = 0.202), with greater CBC variation on average at the end
of each block (fig. S6), suggesting that mouse immune phenotypes
changed significantly during the experiment, increasing in variation
[see (36) for more discussion of temporal variation in CBC profiles].
We found that pairwise CBC similarity before release did not
predict spatiotemporal association during the experiment. We
then observed weak signs of a correlation between midpoint CBC
similarity and spatiotemporal association (Fig. 4A and table S10),
but, by the experimental endpoint, we observed an appreciable re-
lationship between CBC similarity and spatiotemporal association.
Accordingly, our data suggest that the relationship between
immune similarity and spatiotemporal association was not preexist-
ing, nor did early immune similarity prefigure which spatiotempo-
ral associations developed. Rather, this relationship emerged during
the experiment, raising the possibility that the spatiotemporal asso-
ciations between individuals structured the immunological changes
developing during the release period.

Multiple mechanisms may link spatiotemporal association
and immune similarity
We found that pairwise immune similarity was positively correlated
with spatiotemporal association in our rewilded laboratory mice,
and this relationship emerged during the period of rewilding.
These results indicate a form of network assortativity (39): Mice
that associated more had more similar immune phenotypes.
Several non-mutually exclusive mechanisms could underlie this re-
lationship. Spatiotemporal association could be a proxy for direct or
indirect microbial transmission between individuals, similar envi-
ronmental acquisition of antigens (40, 41), and/or shared dietary
proclivities (42, 43). Using environmental covariates and different
types of spatiotemporal association patterns, we can investigate
these possible mechanisms underlying the observed relationship.

A key potential mechanism underlying our observed relation-
ship would be if spatiotemporal association networks facilitated
transmission, exchange, or acquisition of microbes, allergens, and
other antigens that shape immune phenotypes. Such antigens
could be transmitted directly, transmitted indirectly through
fomites, coprophagy, or similar routes (44), or be in the environ-
ment and acquired independently by both individuals. We found
no evidence of a range of common mouse pathogens circulating
in our rewildedmice (table S11), suggesting that pathogen transmis-
sion, which could explain the relationship that we observe, was not
taking place. We analyzed fecal microbiome samples from the end
of the experiment, using 16S ribosomal RNA (rRNA) sequencing to
characterize each individual’s microbiome, and examined the

Fig. 2. Rewilded mouse pairwise association levels varied within and among
strains and locations. Pairwise associations for this plot were calculated from spa-
tiotemporal co-occurrences with a 15-min overlap threshold. (A) Strength of social
associations for each pair of mice, broken down by strain. (B) Pairwise social asso-
ciation strengths, broken down by strain, by set of locations considered: only asso-
ciations at RFID reader at feeding station (“Feeder only”) versus only associations at
all other RFID readers (“Nonfeeder”).
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relationship between gut microbiome similarity, spatiotemporal as-
sociation, and immune similarity. We found that pairwise spatio-
temporal association strengths did not correlate with similarity of
gut microbiota (n = 338) (table S12). Furthermore, we did not
find evidence of a relationship between microbiome similarity
and immune similarity for CD4 T cell memory phenotype in the
MLNs (n = 289) (Fig. 4B), CBC phenotype (n = 315) (fig. S7A),
or B cell phenotype in the MLNs (n = 289) (table S13). Our
model selectionmethods preferredmodels of immune similarity ex-
cluding microbiome similarity (table S12). These results suggest
that the gut bacterial microbiome at experimental endpoints is
not producing the observed relationship between spatiotemporal
associations and immune phenotypes. However, it does not rule
out the potential influence of cumulative exposures to microbes
or to allergens, and more detailed antigenic experience assessment
methods in future studies may reveal relationships between similar-
ity of antigenic experience, immune similarity, and spatiotemporal/
social association.

In the meantime, we can use networks calculated in different
ways to assess possible routes of common antigenic experience.
We compared the predictive powers of networks calculated from
four different overlap windows—4 hours, 1 hour, 15 min (our
default), and 2 min—and a network calculated by comparing sim-
ilarity of check-in distributions in space. This last network indicates

shared space use without incorporating temporal overlap, while the
overlap windows provide varying degrees of strictness in assessing
spatiotemporal overlaps. We reasoned that the stronger simple
shared space use, without temporal overlap, is as a predictor, the
less likely it is that transmission of microbes and antigens is a key
driver of the relationship that we observe and the more likely envi-
ronmental acquisition of microbes is relatively influential. We
further reasoned that shorter overlap windows should be more
closely tied to direct physical contact, by excluding associations
that are not close in time. Space use similarity for a pair of mice cor-
related well with that pair’s spatiotemporal association as calculated
from 15-min overlap windows (Pearson’s r = 0.79) (fig. S8).
However, we found that similarity of space use correlated only
weakly with CD4 T cell memory similarity in the MLNs (n = 295)
(Fig. 4C and table S13) and did not correlate with CBC similarity (n
= 295) (fig. S7B and table S14). Instead, we found that associations
from all four overlap windows could predict CD4 T cell memory
similarity, with 15-min associations being the most predictive but
broadly similar predictive power for all four overlap windows
(Fig. 4C and table S13). Contrastingly, shorter time intervals ap-
peared more predictive of CBC similarity (fig. S7B and table S14).
Our results indicate that simple shared space use is likely insuffi-
cient to explain on its own the relationship between spatiotemporal
association and immunity and that the temporal aspects of

Fig. 3. Spatiotemporal association correlated with immune similarity for several aspects of immune phenotype. Density plots show regression model coefficient
posterior probability distributions plotted via 1000 samples from model-estimated coefficient value distribution. Distributions are estimated statistical relationships
between parameter in regression and response variable (pairwise similarity of some aspect of immune phenotype). (A) Posterior probability distributions for relationship
between spatiotemporal association and cellular immune similarity, estimated by Bayesian linear models. Other predictor variables in models were strain of dyad, shared
infection status, and sibling relationships; individual identity was included as a random effect. See numerical statement of plotted results in table S8. (B) Full model results
for fixed-effect predictors from themodel of CD4 T cell memory phenotype similarity inmesenteric lymph nodes (MLNs) included in (A). Distributions scaled such that the
height of the distribution at the point of greatest probability density is approximately equal for each parameter. See numerical statement of plotted results in table S8. (C)
Posterior probability distributions for relationship between spatiotemporal association and similarity of aspects of cytokine phenotype. See numerical statement of
plotted results in table S9.
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spatiotemporal associations between individuals are crucial. Fur-
thermore, our results suggest that closer temporal windows in spa-
tiotemporal association may be particularly influential for some
aspects of immune phenotype, such as the myeloid cells (mono-
cytes, neutrophils, etc.) that appear in our CBC dataset but not
our flow cytometry dataset.

One other factor that could produce the observed statistical re-
lationship is dietary similarity. Because diet can influence immune
phenotypes (42, 43), shared diets could drive immunological simi-
larity. We do not have precise dietary data, so we cannot properly
test this hypothesis. However, we reasoned that spatiotemporal as-
sociation at the feeding station may be relatively more predictive of

dietary similarity than association at nonfeeding stations because it
indicates shared use of a known food resource. We compared how
association at feeding stations versus nonfeeding stations predicted
immune similarity. We found that nonfeeder and feeder associa-
tions predicted CD4 T cell memory similarity approximately
equally well (Fig. 4D and table S15), while nonfeeder associations
predicted CBC similarity better than did feeder associations (fig.
S7C and table S16). These results are consistent with dietary simi-
larity not being a key driver of immune similarity, but it offers only a
preliminary insight, and more detailed analysis of diet in future
studies will be necessary to investigate this possibility further.

Fig. 4. Exploring hypotheses for the spatiotemporal association–immunity link. Density plots show regression model coefficient posterior probability distributions
plotted via 1000 samples from model-estimated coefficient value distribution. Distributions are estimated statistical relationships between parameter in regression and
response variable (pairwise similarity of some aspect of immune phenotype). (A) Estimated relationships between spatiotemporal association during experiment and
similarity of white blood cell profiles (via CBC profiling) at three different time points during experiment. See numerical statement of plotted results in table S10. (B) Full
results for fixed-effect predictors from model of MLN CD4 T cell memory phenotype similarity in a model that includes gut microbiome similarity. Note that model
selectionmethods do not prefer a model withmicrobiome similarity over onewithout. Distributions scaled such that the height of the distribution at the point of greatest
probability density is approximately equal for each parameter. See numerical statement of plotted results in table S12. (C) Estimated relationships between spatiotem-
poral association calculated from simple shared space use or from different overlap window lengths and MLN CD4 T cell memory phenotype similarity. See numerical
statement of plotted results in table S13. (D) Estimated relationships between similarity of MLN CD4 T cell memory phenotypes and spatiotemporal association calculated
from different subsets of RFID readers. See numerical statement of plotted results in table S15.
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DISCUSSION
We report a previously unidentified relationship between an organ-
ism’s association network and its immune phenotype. Individuals
that spatiotemporally associate more often are more similar in
immune phenotype than individuals who do not associate frequent-
ly. These effects are not present for all cell types in all tissues, but
they are particularly strong for lymphoid cell memory phenotypes
in lymphatic tissue, where antigen recognition takes place. Environ-
ment is a major contributor to immune variation, especially adap-
tive immune variation (2, 3, 5). The rewilding system, by providing
scope for extensive variation in behavior and microbial environ-
ment, allows us to begin to unpick the role of shared spatiotemporal
behavior patterns, social behavior, and common antigenic experi-
ence, as important mediators of this emergent, nonheritable
immune variation. Adaptive immune similarity among spatiotem-
poral associates has important epidemiological and evolutionary
implications, addressed below.

The relationship we observe between spatiotemporal association
and immune cell similarity is most consistent with social and/or
spatiotemporal behavior shaping the immune phenotypes, rather
than immune phenotypes driving the observed behaviors. There
are three reasons for this. First, we generally do not observe corre-
lations between the abundance of individual immune cell types and
a mouse’s behavior, as would occur in the latter case. Second, the
similarity of CBC phenotypes before release into the enclosures
does not predict the strength of spatiotemporal association
between pairs of mice, which we would expect if immune pheno-
types prefigured behavior. We can predict how similar two mice
will be in their immune phenotypes by examining their spatiotem-
poral associations over the preceding 5 weeks; we cannot predict
how often a pair will associate over the next 5 weeks by examining
initial immune phenotypes. Third, the fact that the observed rela-
tionship is strongest for adaptive immune cells suggests that the ex-
perience of specific antigens, which would particularly be
influenced by differences in association, is especially important
for this relationship. This result is more consistent with social be-
havior, or some mechanism linked to spatiotemporal/social associ-
ation, shaping immune similarity than with immune similarity
shaping social behavior.

There are several plausible mechanisms for the emergence of a
relationship between spatiotemporal and immune phenotype that
deserve closer study. A simple rationale for why such association
would predict similarity of immune phenotype is that individuals
that associate more have more similar antigenic experiences. Indi-
viduals could acquire the same antigens directly from the environ-
ment or from each other by direct contact or indirect transmission
from fomites, coprophagy, etc., with this latter route not requiring
individuals to be in the same place at the same time. Similar diets
could also produce some similarity in antigenic experience and
could also directly affect immune phenotype (43). Our analyses
do not lend particular support to any of these mechanisms. It is es-
pecially noteworthy that the similarity of gut microbiota, as assessed
by 16S rRNA sequencing, does not correlate with either spatiotem-
poral association patterns or with immune similarity, as we might
expect if organisms were transmitting microbes to each other or if
individuals were acquiring the same environmental microbes
through spatiotemporal co-occurrence. Relationships in the wild
between social/spatiotemporal associations and microbiome

similarity are particularly well-recorded in the literature (14).
However, our mice start in the lab with a relatively homogeneous
microbiome, unlike in the wild, at least within each strain. Their
range is relatively restricted, and, importantly, all mice use the
feeder at least occasionally, meaning they have common dietary
components and a specific location that could easily homogenize
microbiota without requiring close spatiotemporal association.
This would obscure a relationship of microbial similarity with
both immune phenotype and spatiotemporal association. Other
techniques for assessing gut microbiome may be required because
our methods may not reveal important fine-grained distinctions
among bacteria (45). We did not find any evidence of common
mouse pathogens spreading in our mice either, suggesting that in-
fections are not underlying our observations.

Despite this ambiguity, we suspect that shared antigenic experi-
ence is the most likely explanation for our observations. Several of
our results buttress this claim. First of all, as previously mentioned,
the strongest correlation with spatiotemporal association is in sim-
ilarity of adaptive immune cell phenotypes in the MLNs; these cells
are therefore located in key sites of antigen presentation and change
phenotypes in response to gastrointestinal (GI) antigens. Further-
more, our analyses also do not encompass the fullness of antigenic
exposure. For example, fungal microbiota, which have been shown
in the past to influence the immune phenotypes of both rewilded
and laboratory mice (24, 46), and the virome could also be influenc-
ing immune phenotype. We only assess the gut bacterial micro-
biome here, but there may be important antigens in the skin or
oral microbiota that are influencing immune phenotypes.
Another nuance is temporal: The gut microbiome is quite variable
with time, while immune phenotypes, particularly memory pheno-
types, may be relatively stable records of aggregate experience over a
long timeframe. Thus, the gut microbiome as measured at any given
point in time may not accurately convey the sum of antigenic expe-
rience shaping the immune system. An additional explanation for
our results would be that social cues and behaviors themselves
might underlie the similarity of immune phenotypes. However,
we see relatively little evidence that we can predict immune pheno-
types from individual behavior profiles, and, while social cues like
observing sickness in others can shape immune phenotype (47),
they have not been documented as causing convergence per se.
Further investigation is needed to quantify the relative contribu-
tions of direct and indirect transmission of microbes to antigenic
exchange between spatiotemporal and social associates.

We found three immune elements that do not have a positive
correlation with spatiotemporal association: blood T cells, serum
cytokines, andMLN cytokine production. The lack of a relationship
for serum cytokines is expected given that serum cytokines gener-
ally are consumed and decay rapidly, on the order of hours (48, 49).
This makes them indicators only of very recent immunological dy-
namics, unlikely to be correlated with long-term association
network patterns. The difference between our results for blood
andMLNT cells is intriguing, but research in humans has suggested
that memory composition in blood and lymphoid tissues often
differs strongly within individuals (50). Hence, there may be
reasons why the relationships would be heterogeneous. Why we ob-
served an association in the MLNs rather than the blood may reflect
the importance of MLNs for antigen recognition compared to the
blood. The MLNs drain the gut and are where T cells perform
antigen recognition on antigens passing through the digestive
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system, while the blood is generally not a site of antigen recognition
and instead is largely a highway moving lymphocytes between
tissues, including lymph nodes (51). This distinction in T cell
biology in the MLNs versus blood would contrast with the more
holistic image of the CBC profiles, a profile more amenable to as-
sessment through peripheral blood because many of the basic leu-
kocyte types are commonly located in the blood.

The negative correlation of spatiotemporal association strength
with cytokine production profiles in response to antigenic stimula-
tion is quite intriguing. This would cut against the notion that
similar antigenic experiences should produce similar immune phe-
notypes. However, our past analyses comparing rewilded mice to
laboratory mice have suggested that environment has relatively
little identifiable effect on cytokine production responses; genetic
background instead is a key predictor of the observed variation
(23, 36). Antigenic exposure history, as influenced by association
patterns, may be less important for this aspect of immune pheno-
type. Furthermore, the content of social interactions may also have
influence here. Social rank, position within a dominance hierarchy,
can shape immune phenotype in nonhuman primates, with domi-
nant and subordinate individuals having different immune gene ex-
pression patterns both at baseline and in response to antigenic
stimulation (52–54). A similar phenomenon has been identified
in lab-housed adult male mice (55). Thus, differences in social
status may cause divergence in immune phenotype. Because we
cannot assess interaction content using our RFID readers, we may
be blind to particular elements of behavior that would drive this dif-
ferentiation among closely associated mice.

The lack of positive correlations between cytokine profiles and
spatiotemporal association may be further unexpected given the
aforementioned ties of cytokines to neurological disposition
toward social behavior (29–31). Because we saw little variation in
the strength of an individual’s associations, we cannot properly
explore this question. However, the cytokine phenotypes displayed
by rewilded mice and their behavior may still be interwoven. Previ-
ous rewilding experiments have found that rewilding does produce
increases in the magnitude of IL-17 production in response to an-
tigenic stimuli, and this increase may be tied to the increase in gran-
ulocytes observed in rewilding and through exposure to commensal
fungi, which generally provoke T helper (TH) 17 cell differentiation
(24, 36). Given that IL-17RA mediates neuronal signaling for social
behavior, there may be links between type 17 immunity, antigenic
experience, and the behavioral variation among rewilded strains de-
scribed here and observed by others (17).Wemight also particularly
expect variation between lab-housed and rewilded mice in their
degree of sociability because of their differences in IL-17 signaling
(30). Other cytokines, like TNF-α (29) and IFN-γ (31), may produce
similar effects. Investigations in rewilded mice and comparisons
with lab mice can offer greater insight into the links between immu-
nity, neurobiology, and behavior and the multivalent pressures on
this relationship.

Further research can help to disentangle the relative contribu-
tions of social ties, shared spatiotemporal activity, common anti-
genic experience, diet, and other factors to the statistical
relationship that we observed here. One approach, to investigate
the influence of commensal symbionts, would be simply to charac-
terize microbiota in greater depth, using metagenomic sequencing
approaches (14, 45), samples from different tissues with different
microbiotas (e.g., skin), and more samples across the duration of

the experiment, to better grasp fine-grained distinctions in micro-
bial communities at the endpoint and longitudinally. Labeled mi-
crobes (56) could allow assessment of microbe transmission/
sharing within networks, probing the relative frequency of
antigen transmission versus shared acquisition from the environ-
ment. Characterizing diet during a rewilding period would allow
a direct inquiry into the role of dietary similarity in immune simi-
larity, as well as identifying whether association patterns do corre-
late with shared diets. An alternative way to investigate the
mechanisms producing the behavior-immunity relationship seen
here would be through reductionist experiments in laboratory set-
tings. For example, using arenas that are sequentially visited by in-
dividual mice would remove the possibility for physical contact
while still allowing mice to share space in close temporal proximity
and therefore acquire the same antigens from the environment [al-
though they may also transmit them indirectly to each other (44)].
Laboratory experiments with greater control over initial microbiota
could also identify mediating effects from microbes on changes in
immune phenotypewith time and reactions to antigenic experience.
In addition, laboratory experiments in large cages with opportuni-
ties for social contact, as in (55, 57), would retain overall variation in
interaction while controlling diet. They can also allow fuller track-
ing of activity via video to identify with greater precision social net-
works and physical contacts for closer investigation of how different
types of association might contribute to immune phenotype
similarity.

Regardless of the precise mechanism(s) underlying the relation-
ship between immunological similarity and spatiotemporal associ-
ation, these results offer intriguing insight into the flexibility of the
immune system in response to new conditions and experiences. As
previously noted, immunity-behavior relationships like those that
we observe here may generate and structure some of the extensive
heterogeneity observed in human immune phenotypes (2, 3). Our
observations help explain the previously identified immunological
similarities between co-parenting humans (32), by showing that fre-
quent associations between individuals, as would occur when co-
parenting, produce higher immune similarity, while revealing a
broader influence of interaction patterns on immune variation.
Moreover, if spatiotemporal association influences immune state
and if immune state can predict functional responses (3, 25), then
individuals that are more associated should be more similar in their
susceptibility to a given parasite challenge, at least in some aspects
of the immune response, e.g., memory quality and specificity, if not
others, e.g., cytokine responses. Heterogeneities in disease suscept-
ibility have been shown theoretically and empirically to affect infec-
tious disease dynamics and pathogen evolution (58, 59). Our work
here highlights a way that such heterogeneities might emerge and
may therefore identify a phenomenon important not only for
hosts but also for pathogens.

Overall, we document extensive behavioral variation in laborato-
ry mice rewilded in outdoor enclosures. We show that interactions
between individuals link with immune phenotypes such that the
more associated two individuals were, the more similar their
immune phenotypes were. This effect, which emerged during the
experiments, was particularly strong for cellular composition but
weak or even negative for cytokines. These results offer intriguing
implications for the generation of natural immune variation and the
role of social and spatiotemporal contact in shaping immune
systems, and they highlight important new directions of study for
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understanding disease susceptibility, infectious disease ecology, and
the operation of natural selection on immune phenotypes.

MATERIALS AND METHODS
Rewilding
For our rewilding, we used n = 89 female mice from three mouse
strains used as founders of the Collaborative Cross: C57BL/6,
129S1, and PWK/PhJ. Genetic variation in these strains spans ~50
million single-nucleotide polymorphisms, a similar order of magni-
tude to the total variation documented among humans (60, 61). The
experiment took place across two consecutive blocks. Before each
block, mice were bred at the National Institutes of Health before
shipping to Princeton University for acclimation in a dedicated
animal facility to temperatures and light cycles characteristic of
summer in New Jersey (26° ± 1°C and a 15-hour light/9-hour
dark cycle). Mice were housed in cages of five before release; a
subset of mice from each cage was chosen for release, while the
others were kept as controls in the warm and humid vivarium
(36). For release, the mice were divided into three groups per
block, with each group consisting of a single strain. In block 1, we
released n = 42 mice (15 PWK/PhJ, 14 C57BL/6, and 13 129S1); in
block 2, we released n = 47 mice (16 PWK/PhJ, 18 C57BL/6, and 13
129S1). Strains were kept separate to avoid any potential for antag-
onistic interactions, and, between blocks, we rotated the enclosure
to which each strain was assigned so that enclosure pen and mouse
strain were unconfounded. All experimental procedures were ap-
proved by the Princeton University Institutional Animal Care and
Use Committee (protocol no. 1982).

We placed each group of mice in a set of enclosures located in
Princeton, New Jersey, during the late spring and summer of 2021.
Block 1 ran from May to June 2021, and block 2 ran from July to
August 2021. These enclosures (fig. S1), described in (21) and also
used in (23, 24, 26, 42), are triangular wedges, ~180 m2 in area, and
enclosed by 1-m-high walls of zinc-coated steel, which penetrate
into the ground of ~0.5 m. Natural vegetation grows in the wedge,
with the exception of a strip around the perimeter of the enclosures,
which is kept clean-cut for access, and there is a low wooden hut of
180 cm by 140 cm by 70 cm with a corrugated metal roof that pro-
vides some shelter. The exterior walls are topped with an electric
fence to exclude any terrestrial predators or other animals, while
aerial predators are deterred with the expedient of several fishing
lines strung over each enclosure and hung with aluminum pie
plates. Several years’ experiments indicate that these measures are
effective at both keeping mice in and predators and other animals
out, with the exception of small birds that pose no threat to themice.
Within each enclosure, the mice can roam and forage freely; each
enclosure contains one feeding station near the hut stocked with
lab chow (PicoLab Rodent Diet 20) and two water bottles inside
the hut. We checked the status of these three times a week,
topping up the chow if necessary and completely replacing it each
week and refilling the bottles if they were running low.

We tracked mouse behavior via RFID check-ins. Before release,
we injected each mouse with a subcutaneous RFID tag (8 mm–by–
1.4 mm FDX-B “Skinny” PIT Tag, Oregon RFID, Portland, OR,
USA), patched the injection site with liquid bandage, and allowed
themouse time to heal. Each enclosure contained five RFID readers,
of a design described by Budischak et al. (42). Briefly, each reader
consisted of a plastic PVC tube ~45 cm in length around which an

antenna, connected to an RFID reader/writer, is wrapped. When a
mouse runs through the tube, the RFID reader/writer records the
tag number of that mouse and transmits it to a central database
that records the tag number, the particular RFID reader, and the
date and time of the check-in (see further details below). One of
the five RFID readers in each enclosure was attached to the
feeding station, such that each time the mouse entered or exited
the feeding station, it produced a check-in. The other four were ar-
ranged in a diamond pattern around the perimeter of the enclo-
sure (Fig. 1A).

Before shipping from the breeding facility, blood samples for
CBC analysis were collected with cheek bleeds; at Princeton,
several days before release, fecal samples were collected. At 2
weeks after release, we trapped the mice using Longworth live
traps baited with peanut butter and a pellet of lab chow. We
placed at least 40 traps in each enclosure, inside and around the
hut and in other places throughout the enclosure. We drew
further blood samples for CBC analysis and collected fecal
samples; we placed blood samples on ice, while fecal samples
were immediately placed on dry ice and then frozen at −80°C.
We caught n = 6 mice that had lost their original RFID tags since
their release into the enclosures; each was given a new RFID tag, and
the injection site was patched with liquid bandage. In addition, we
selected a subset of individuals (n = 24 for block 1 and n = 27 for
block 2) for challenges with T. muris, a natural gut nematode para-
site of mice. We gave each of these mice 200 embryonated eggs via
oral gavage. After sampling and infection challenge, mice were re-
released in their home enclosure. We also caught mice that had
escaped from their original enclosure into different enclosures; we
returned these mice to their original enclosures and repaired the
breach to prevent further escapes.

At approximately 5 weeks after release, we retrapped all mice
using the same method. Again, we drew blood samples for CBC
analysis with cheek bleeds using a 4-mm Medipoint Golden Rod
Lancet Blade (Medipoint NC9922361) and collected fecal
samples; then, we anesthetized the mice via isoflurane inhalation
and collected the remaining blood with a terminal cardiac puncture
for analysis via flow cytometry.We processed themice for collection
of the MLNs, the cecum, and the GI tract. We placed blood samples
again on ice, while we placed fecal samples on dry ice and then froze
them at −80°C. We dissected the cecum for counts of T. muris par-
asites. In total, at the end of the experiment we recaptured n = 72 of
the original 89 mice released.

Immunological assessment
We performed a CBC analysis with differentials of the whole blood
sample collected into 1.3-ml heparin-coated tubes (Sarstedt Inc.,
NC9574345) and analyzed using the Element HT5 Veterinary He-
matology Analyzer (Heska), allowing us to ascertain the abundance
of leukocytes and the relative abundances of five different leukocyte
types (neutrophils, lymphocytes, monocytes, eosinophils, and baso-
phils) in the blood. We assessed lymphocyte populations in the pe-
ripheral blood and in the MLNs using flow cytometry.

For blood, whole blood collected via the cheek bleeds into hep-
arinized tubes (Sarstedt Inc., SC MTUBE 1.3ML LI HEP/PK100)
was mixed with heparinized blood collected via cardiac puncture
method. The combined blood samples were spun for 10 min at
1500 rpm, and plasma was collected and stored at −80°C for
further cytokine analysis. The cellular component resuspended in
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phosphate-buffered saline (PBS) next underwent a density gradient
separation process using the Lymphocyte Separation Media (LSM
MP Biomedicals, LLC, Irvine, CA) according to the manufacturer’s
instruction. Isolated peripheral blood mononuclear cells (PBMCs)
were washed twice in PBS and then used for downstream spectral
cytometric analysis. Single-cell suspension from the MLNs were
prepared by mashing the tissues individually through a 70-μm
cell strainer and washed with RPMI. Cells were then washed with
RPMI supplemented with 10% fetal calf serum. Live cell numbers
were enumerated using the Element HT5 Veterinary Hematology
Analyzer (Heska).

For spectral cytometry, single-cell suspensions prepared from
the PBMCs and MLNs were washed twice with flow cytometry
buffer (FACs Buffer) and PBS before incubating with Live/Dead
Fixable Blue (Thermo Fisher Scientific) and Fc Block (clone
KT1632; BD) for 10 min at room temperature. Cocktails of fluores-
cently conjugated antibodies (table S17) diluted in FACs Buffer and
10% Brilliant Stain Buffer (BD) were then added directly to cells and
incubated for a further 30 min at room temperature. For the lym-
phoid panel, cells were next incubated in an eBioscience Transcrip-
tion Factor Fixation and Permeabilization solution (Invitrogen) for
12 to 18 hours at 4°C and stained with cocktails of fluorescently
labeled antibodies against intracellular antigens diluted in the Per-
meabilization Buffer (Invitrogen) for 1 hour at 4°C.

Spectral Unmixing was performed for each experiment using
single-strained controls with UltraComp eBeads (Invitrogen).
Dead cells and doublets were excluded from analysis. All samples
were collected on an Aurora spectral cytometer (Cytek) and ana-
lyzed using the OMIQ software (www.omiq.ai/), and data cleaning
and scaling was done using algorithms like FlowCut within the
OMIQ software. Subsampled cells including 10,000 live, CD45+
cells were reclustered in an unsupervised version using the Joe’s
Flow software (Github: https://github.com/niaid/JoesFlow).

We also assessed cytokine phenotypes through two techniques:
plasma cytokine levels at time of sacrifice and production of cyto-
kines by MLN cells in response to antigenic stimulus. Plasma con-
centrations of IL-5, IL-6, IL-22, IL-17A, IFN-γ, and TNF-α were
measured also measured using the commercially available murine
TH cytokine LEGENDplex assay (BioLegend) according to theman-
ufacturer ’s instructions. For MLN cytokine production assays,
single-cell suspension of MLN cells were reconstituted in RPMI at
2 × 106 cells/ml, and 0.1 ml was cultured in 96-well microtiter plates
that contained ultraviolet-killed microbes (107 colony-forming
units/ml), 105 αCD3/CD28 beads (11456F), or lipopolysaccharide
(100 ng/ml) (L2630) or PBS control. The microbes included were
Bacteroides vulgatus (American Type Culture Collection, 8482),
Candida albicans (UC820), Clostridium perfringens (National Col-
lection of Type Cultures 10240), and T. muris excretory-secretory
antigens. Supernatants were collected after 2 days and stored at
−80°C. Concentrations of IFN-γ, IL-5, TNF-α, IL-2, IL-6, IL-4,
IL-10, IL-9, IL-17A, IL-22, and IL-13 in the supernatants were mea-
sured using a commercially available murine TH cytokine
LEGENDplex assay (Biolegend) according to the manufacturer’s
instructions. To quantify the cytokine production, we divided pro-
duction in response to antigens/microbes by production with 1×
PBS and then took the log2 of the divided quantity plus 1 (to
account for any samples with no production in response to antigen-
ic stimulation).

Microbiome
DNA for microbiome analysis was isolated from frozen fecal
samples collected at the endpoint using the QIAsymphony Power-
Fecal Pro DNAKit (938036) with the QIAsymphony SP instrument.
We prepared the DNA library using the SMRTbell Express Tem-
plate Prep Kit 2.0, and Amplicon-Seq library sequencing was per-
formed on the PacBio Sequel II system. Sequencing reads were
primer trimmed, filtered, dereplicated, and then analyzed using
the Divisive Amplicon Denoising Algorithm 2 pipeline (https://
benjjneb.github.io/dada2/tutorial.html). We performed bacterial
taxonomy assignment against the DECIPHER (www2.decipher.
codes/Downloads.html). and SILVA v138 databases. We generated
an amplicon sequence variant table, which was then used for assess-
ment of pairwise microbiome similarity. We scaled read counts for
each taxon for each individual by the total number of reads for that
individual, producing relative abundance estimates. From these rel-
ative abundance distributions, we calculated microbiome similarity
for pairs of mice with Jaccard index.

Individual behavior assessment
We described mouse individual behavior on the basis of RFID visits
logged at the five RFID readers in each enclosure. The RFID reader
casing houses an RFID reader/writer board (Priority 1 Design) and
a Particle Photon Wi-Fi–enabled IoT device (Particle). These are
powered with an external power supply plugged in to an outlet at
the center of the enclosures. Each time a mouse passes through
the RFID reader, the RFID reader/writer transmits the RFID
signal to the Photon unit. The Photon unit then transmits to a
central Particle server a message containing the RFID number,
the reader identity, and the time of the check-in, which is accurate
to the second. We collect the data from the Particle server via a
webhook in our own database. The resulting behavioral dataset con-
sists of 103,367 check-ins across the two blocks, with RFID number,
date, time, and location for each check-in. Each reader was associ-
ated with a particular location in its enclosure: the feeder, the left
and right sides (relative to the exterior wall of the triangle), base
(along the exterior wall), and tower (the reader closest to the tip op-
posite the exterior wall) (Fig. 1A).We converted each RFID number
to the ID number of the associated mouse. Some mice were associ-
ated with two RFID numbers because they received replacement
RFIDs at the midpoint trapping during the experiment, and we syn-
onymized these RFID numbers in our database.

We applied several filtering steps to ensure that the data did not
contain accidental biases. We first identified times when individual
RFID readers were offline for an extended period of time, due either
to power and Wi-Fi outages at the enclosures or to water entering
the reader’s casing. If at least one reader was offline during a par-
ticular night, then we dropped from the dataset all check-ins from
all readers within the same enclosure as the affected reader for the
corresponding 24-hour period (12 noon to 12 noon), to avoid mis-
representing spatial location of activity, relative abundance of activ-
ity, or social network structure. For our second filtering step, we
removed nights during which trapping took place from our
check-in dataset, because the number of check-ins for an individual
on a given night would depend on when, or if, that mouse entered a
trap. In our third step, for each individual that escaped its home en-
closure, we also removed from our dataset all of its check-ins taking
place outside of the enclosure in which it was initially released. After
completion of this filtering, the dataset comprised 97,358 check-ins.
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We calculated activity levels using multiple metrics. Because the
length of the experiment, in terms of nights of activity, varied from
enclosure to enclosure and because some nights had to be removed
due to missing reader data, we calculated all activity levels on a per-
night basis. In block 1, wedges 2 and 3 have 33 nights of data, while
wedge 4 has 25 nights of data; in block 2, wedges 2 and 3 have 26
nights of data and wedge 4 has 27 nights of data (there are fewer
nights for block 2 due to a power and Wi-Fi outage that delayed
the start of tracking until after release). The simplest metric was
the average number of check-ins per night for each mouse. We
also calculated average minimum distance traveled and roaming
entropy each night. Minimum distance was calculated on the
basis of the distances between each RFID reader within a given en-
closure. Each time amouse visited a new reader on a given night, the
distance between the new reader and the previous reader was added
to the distance that mouse had traveled that night. If the reader
visited was the same as the previous reader, then no distance was
added. Distances between reader locations varied slightly among
enclosures due to differences in overall dimensions. An average
across all nights was calculated for each mouse to give the
minimum distance traveled per night by that mouse.

Roaming entropy describes how evenly an individual’s activity is
spread in time and space (57). We calculated roaming entropy after
the method defined in (57), using 12-hour windows, from 8:00 p.m.
to 8:00 a.m., corresponding to the hours of greatest mouse activity
(fig. S9). The roaming entropy REi,t for mouse i on day t is

REi;t ¼ �
Xk

j¼1
pi;j;tlogðpi;j;tÞ=logðkÞ

where the reader is j and the total number of readers in the wedge is
k. pi,j,t is the probability of mouse i being observed at reader j on day
t. To calculate this value, we divided each individual night was
divided into minute-long windows. For each mouse, the reader
most recently visited at the end of that window was assigned as
the reader at which the mouse was present during that window
(thus assuming that each mouse is in the vicinity of the last
reader it visited until it visits a new reader). REi,t is on the interval
[0, 1], with lower values indicating that activity is mostly concentrat-
ed at one location and higher values indicating that activity is spread
evenly in time around several locations. Mean roaming entropy for
an individual was calculated by as the average of their roaming en-
tropies from all nights during which they appeared.

Spatiotemporal association assessment
We similarly assessed social behavior using RFID check-in records.
We derived our approach and code from that in (11), with suitable
modifications for our particular experimental setup; we use the
term spatiotemporal association rather than social association to
reflect the precise process of calculating associations. The basic
metric that we used to calculate pairwise spatiotemporal association
strength between individuals is the simple ratio index (SRI). Mice
are considered to be associated with each other if they appear at
the same location, during a given night, within some time
window of each other. SRI for two mice i and j is calculated as

SRI ¼
X

X þ Yi þ Yj þ Yij

where X is the number of night-location pairs in which the mice
overlap at least once during the night; Yij is the number of night-
location pairs in which both mice appear but not within the
overlap window; and Yi and Yj are the number of night-location
pairs in which only mouse i or only mouse j appears, respectively.
SRI is bounded on [0, 1], where 0 indicates that individuals never
overlap at a location within the given timewindow, while 1 indicates
that, for every night-location pair, they do so at least once. SRI is
used in a variety of animal behavior studies and allows us to describe
spatiotemporal association patterns among the mice (11, 16, 37).
We calculated association networks for the six different groups—
three strains, two blocks. When we use the term spatiotemporal as-
sociation in our text, we are referring to the associations of pairs of
mice as calculated with SRI. We also calculated for each individual
an average of the pairwise spatiotemporal association strength for all
pairs containing that individual; this is metric is also bounded on
[0, 1].

Two major nuances were involved in the calculation of our net-
works. First, because some mice lost their RFID tags, they did not
produce check-in data for periods in which those mice were still
active and potentially associating with other mice but did not
have an RFID tag. To accommodate these missing data, we imple-
mented an adjustment to SRI calculations for these mice, which we
referred to as “time control,” again derived from (11). For these
mice, when determining associations for a pair, we exclude all
check-ins taking place after the last night on which the mouse
that is recorded with its RFID appeared. This is because the
mouse’s absence on subsequent nights could plausibly be attributed
to loss of its RFID tag, so we are unable to determine whether its
partner in the pair was or was not associating with the mouse
with the missing tag. To aid this, we identified associations in two
discrete chunks, one before the midpoint trapping session and one
after the midpoint trapping session, because the midpoint was the
timewhenmissing RFID tags were replaced.With this approach, we
effectively assume that associations during the phase when the
mouse does not have an RFID tag are approximately equal to
those occurring at other times of the experiment. Some support
for this approach can be found in the fact that, after excluding in-
dividuals that lost an RFID tag at some point during the experiment,
the strengths of the pairwise associations between pairs of individ-
uals before the midpoint trapping session are well correlated with
the strengths of the association after the midpoint trapping
session for that pair (Pearson’s r = 0.73; fig. S9).

The other nuance was in our handling of calculating association
strengths for individuals that escaped from their assigned enclosure
at some point during the experiment. In these cases, mice would
have been physically unable to associate with others in their as-
signed enclosure. We decided not to excise days of escape from
the calculations of association strength for pairs with at least one
mouse that escaped from its focal enclosure, because the separation
was a genuine factor that altered their frequency of association.
Unlike with the lost RFIDs, we do definitively know that the mice
of the pair were not associating when one was outside the home en-
closure. We did not include escapee mice in the networks of the
wedges they entered, however. Thus, all of our associations are
between mice that shared home enclosures.

To explore how location and overlap window duration affected
estimates of association strength, we calculated networks in several
different scenarios. We used four different overlap window lengths:
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4 hours, 1 hour, 15 min (our default for presented results), and 2
min. These impose greater or lesser stringency in estimates of asso-
ciation; shorter time frames should be more closely tied to rates of
actual contact, simply because associations with these timewindows
require the mice to be in the same place at a closer time. To inves-
tigate similarities in space use independent of temporal overlaps, we
also calculated pairwise similarity of check-in distributions. We
used the Jaccard index to determine for each pair how similar
their distributions of check-ins were across the five RFID reader lo-
cations. This statistic tells us how similar individuals were in their
patterns of space use, including the abundance of visits to a given
location. We did not calculate space use similarity for pairs includ-
ing individuals that lost an RFID tag, because their check-in profiles
were incomplete. We also calculated social networks for subsets of
readers: just association at the feeding station in each wedge and as-
sociation at the nonfeeding stations in each wedge. These allowed us
to assess how association strengths varied at different locations. In
general, association strengths at different time intervals were corre-
lated with each other, as were association strengths at different sets
of locations, but strengths varied on the basis of the length of the
overlap windows and the locations included.

Statistical analyses
Our statistical analyses can be broken down into two major subsets:
(i) analyses of the relationships between individual immune traits
and individual behavior traits and (ii) analyses of the relationship
between pairwise immune similarity and spatiotemporal associa-
tion and other predictors. For all of our statistical analyses, we
used a Bayesian framework in R v4.1.2 and the package brms (62,
63). Model selection for each analysis was carried out using widely
applicable information criterion (WAIC), a generalized version of
Akaike information criterion that can be used with our Bayesian
models. The model chosen and presented is that with the lowest
WAIC value, except where otherwise specified.

Analyses of individual behavior used mixed-effects linear regres-
sion models with appropriate distributions for response variables,
as follows. Average check-ins per day and average minimum dis-
tance traveled were both log-transformed and modeled as normally
distributed response variables. Mean roaming entropy was modeled
as a beta-distributed response variable with a logit link function.
Immune traits were log-transformed and modeled as normally dis-
tributed response variables. For immune trait values of 0 that could
not be log-transformed (e.g., basophil concentrations in the CBC),
we assigned values immediately below the detection threshold of the
assay to ensure that low values for those traits were not systemati-
cally excluded from our analyses. Potential fixed-effect variables in-
cluded for model selection were genotype and infection status, as
well as behavioral traits of interest when investigating the effect of
behavior on immune phenotypes. Potential random-effect variables
were block of the experiment, enclosure in which the mouse was
housed, parentage of the mouse, and the cage in which the mouse
was housed before release outdoors. For all analyses involving indi-
vidual behavior either as predictor or response variable, we excluded
any mice that either lost an RFID tag or escaped their assigned
wedge during the experiment. For analyses of factors predicting
pairwise association behavior, we generally used binomial regres-
sions, with the number of trials for each pair of mice being the
number of night-location pairs for which at least one of the two
mice in the pair appeared and the number of successes being the

number of night-location pairs for which the two mice appeared
within the designated overlap window.

We tookmultiple approaches to describing immune similarity as
befitting different data. For cell-type abundances, we used methods
similar to those used to describe similarity of microbiome compo-
sition or species assemblages in community ecology. We assessed
the relative abundance of different types of immune cells and calcu-
lated the similarity of these abundance distributions as Jaccard
index using the R package vegan v2.5-7 (64). Jaccard index is on
the interval [0, 1], where a value of 0 indicates no overlap at all in
the abundance distribution (i.e., entirely dissimilar) and a value of 1
indicates perfect congruence of the abundance distribution (i.e.,
identical). We calculated similarities in this manner for several dif-
ferent sets of cell types: white blood cell phenotypes from CBC data,
combined relative abundances of both CD4 and CD8 T cell memory
phenotypes (based on cell-type identity determined from CD62L
and CD44 expression on T cells as described above) in each of
the peripheral blood and MLNs, as well as just CD4 T cell
memory and just CD8 T cell memory in the MLNs, and relative
abundance of different B cell phenotypes on the CD62L/CD44 ex-
pression axes in the blood and MLNs.

For calculating similarity of cytokine phenotypes, we used Man-
hattan distance, a metric that determines the cumulative difference
along each axis between two phenotypes plotted in an n-dimension-
al space, where n is the number of traits measured. For plasma cy-
tokines, we first log-transformed the cytokine concentrations so
that they were normally distributed and then scaled the resulting
values as z-scores, such that Manhattan distance would be the
sum of the standard deviations of difference between the two phe-
notypes across all cytokines. For MLN cytokine production, we ad-
justed production for null controls as stated above and then
followed the same procedure.

The analysis of spatiotemporal/social associations drawn from
observation data is considerably more complex and has been the
subject of much discussion (65–70). We opted to use Bayesian mul-
tiple-membershipmixed-effects linear regressions, which are recog-
nized as a valid statistical approach when analyzing such
relationships (66, 68) and for which there are statistical packages
capable of handling multiple-member mixed-effects beta regres-
sions (brms, which we use). As above, we used model selection to
identify the variables for inclusion in our analyses. Because the re-
sponse variables were describing the status of a pair, all explanatory
variables were chosen to match. Potential fixed-effect variables in-
cluded were the strain identity of the two members of the pair (with
the members of the dyad always of the same strain), whether the
individuals were full siblings, and whether the individuals were
housed in the same cage before release in their enclosure; spatiotem-
poral association was also included as a fixed effect in appropriate
cases when analyzing immune similarity. We also included infec-
tion status, but we used a different treatment of this variable de-
pending on whether we were analyzing social association or
immune similarity. When analyzing spatiotemporal association,
we used three categories: both mice infected, one mouse infected,
or neither mouse infected. When analyzing immune similarity,
we used two categories: shared infection status (meaning either
both mice were infected or neither mouse was infected) or different
infection status. Potential random-effect variables considered in-
cluded block of the experiment and the enclosure in which the
pair were housed, as well as multiple-membership random effects
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for each individual in the pair. In general, block, enclosure, and
shared parentage were not included in optimal models after
model selection, but there were exceptions. Estimated model pa-
rameter values are reported and plotted as posterior probability dis-
tributions and are unbounded, able to take on any real
number value.

Spatiotemporal association levels were modeled as binomially
distributed response variables, where the number of reader-night
pairs in which one or both mice appeared (i.e., the denominator
of SRI for that pair) was the number of trials and the number of
reader-night pairs in which both mice appeared (i.e., the numerator
for SRI of that pair) was the number of successes. Jaccard index phe-
notype similarity variables were modeled as beta-distributed re-
sponse variables with a logit link function. Beta distributions do
not contain 0 or 1, whereas it is possible for our similarity scores
to be 0 or 1. However, this is vanishingly unlikely to occur (requir-
ing, respectively, that there be no immune cell types in common or
the exact same percentages for each cell type across samples with
very large numbers of cells), and we thus considered the use of a
beta distribution as an appropriate choice instead of a zero-and-
one-inflated beta regression (71). Manhattan distance phenotype
similarity variables were log-transformed and modeled as normally
distributed response variables. Manhattan distance increases as the
similarity of phenotypes decreases; for ease of understanding, we
report all coefficient values for regressions predicting Manhattan
distance as their negatives, such that a positive coefficient indicates
a correlation with increased similarity for both cell distribution sim-
ilarity and cytokine production similarity.
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